Categories: Business

Keeping SARS-CoV-2 closed for business with small molecules – Science Daily

The infamous spike proteins on the surface of SARS-CoV-2 help it bind to and enter human cells. Because of their important role in spreading infection, these spike proteins are one of the main targets for COVID-19 vaccines and treatments. But those remedies gradually lose effectiveness when certain segments of the spike proteins mutate. Now, researchers report that they have discovered small molecules that successfully target other segments that mutate less.

Spike proteins change shape when they attack a cell. In their “open” structure, they expose a section known as the receptor-binding domain (RBD) so it can attach to the ACE2 protein on human cells. In the “closed” structure, this RBD segment is tucked inside the spike protein and can’t bind to human cells. Antibodies contained in some COVID-19 therapies or stimulated by vaccines or infection target the RBD domain so it can’t bind to ACE2. However, some emerging variants of the coronavirus contain mutations in the RBD fragment. That means vaccines and antibody therapies designed to target that fragment could become less effective as the virus mutates.

To get around this problem, other, less mutation-prone parts of the spike protein could be targeted instead. One possibility is a pocket in the spike protein that has been dubbed the Achilles’ heel of the virus. When this cranny is occupied by free fatty acids (FFAs) or a few other compounds, the protein remains locked in its closed, harmless configuration. However, those compounds aren’t suitable treatments because they aren’t stable or they bind weakly. So, Jianhui Huang, Niu Huang and colleagues decided to look for other potential treatments that lack these flaws.

Using computer modeling, the team screened a library of small molecules, seeking ones that could slip into this pocket and stick firmly to the spike protein, keeping it in the closed shape. The researchers then used surface plasmon resonance and other techniques to evaluate analogs of these molecules for improved binding and solubility. The resulting compounds, which can bind to spike proteins from the original coronavirus as well as the omicron BA.4 variant, could serve as a starting point for developing broad-spectrum treatments for COVID-19, the team says.

The authors acknowledge support from the Beijing Municipal Science & Technology Commission and Tsinghua University.

source

InfoLair

Our primary beliefs and values include giving our readers quality material, disseminating information to encourage informed thinking, and supporting policies and ideas. We frequently curate or extract content from reliable online sources in order to uphold those ideals.

Recent Posts

Clear Admit: Advice on how to prep for an MBA, from a company that’s done it for 25 years – Technical.ly

To read the full article click below: Clear Admit: Advice on how to prep for… Read More

14 hours ago

UP Woman Dies After Unlicensed, Allegedly Drunk Clinic Owner ‘Fatally Operates’ on Her Using YouTube Tutorial; Investigation Underway – The Logical Indian

UP Woman Dies After Unlicensed, Allegedly Drunk Clinic Owner ‘Fatally Operates’ on Her Using YouTube… Read More

2 days ago

90-year-old Prem Chopra diagnosed with severe aortic stenosis: Cardiologists explain this silent heart condition | Health – Hindustan Times

90-year-old Prem Chopra diagnosed with severe aortic stenosis: Cardiologists explain this silent heart condition |… Read More

3 days ago

Revealed – top underwriting agencies in Australia for 2025 – Insurance Business

Revealed – top underwriting agencies in Australia for 2025  Insurance Business Source Read More

5 days ago

Volunteers describe 'wonderful' DIY SOS Southampton experience – BBC

To read the full article click below: Volunteers describe 'wonderful' DIY SOS Southampton experience  BBC Source Read More

1 week ago

Learn How to Make Combat System in Unreal Engine with This Free Tutorial – 80 Level

Learn How to Make Combat System in Unreal Engine with This Free Tutorial  80 Level Source Read More

1 week ago

This website uses cookies.